martes, 19 de octubre de 2010

Práctica 1

Benemérita Universidad Autónoma de Puebla
Teoría de Control
Práctica 1: Introducción a Matlab para Control
Objetivo: Introducir al alumno al software Matlab, con el fin de reafirmar los conocimientos vistos en el aula.
I.- Lee cuidadosamente y ejecuta los comandos que se presentan a continuación
Raíces de un polinomio
1) Para obtener en Matlab las raíces de un polinomio de cualquier orden, consideremos el siguiente polinomio:

Ingresamos el polinomio p= [1 4 4 1 20] y luego: r=roots(p);
2) Si ahora quiero conocer el polinomio de las siguientes raíces p1,2 = -2.6445 ± 1.2595 j y p3,4 = 0.6545 ± 1.3742 j. Entonces el polinomio al que le corresponden esas raíces es: P=poly([p1,p2,p3,p4]);
Desarrollo de fracciones parciales
Cuando analizamos un sistema de control, por lo general disponemos de su función transferencia a lazo cerrado G(s), donde G(s) = Y(s)/R(s) . Con lo que podemos escribir la salida en función de la transferencia y la entrada: Y(s) = G(s) x R(s). Si deseáramos conocer la respuesta temporal g(t) del sistema cuando lo excitamos con una señal de entrada r(t), debemos calcular la transformada inversa de Laplace, es decir g(t) =
Como sabemos, es más sencillo de anti transformar cuando se trata de un cociente de polinomios, dado que si lo expresamos en fracciones simples podemos utilizar una tabla de transformadas de Laplace.
Supongamos que tenemos la siguiente función transferencia:

1) Hallar por el procedimiento de polos distintos a1,a2 y a3
2) Introduce en matlab el numerador y el denominador
3) Introduce [res, p]=residue(num,den)
Nota: Si el numerador y el denominador son del mismo orden, se le llama función de transferencia propia y se introduce en matlab la variable k. [res, p,k]=residue(num,den)

No hay comentarios:

Publicar un comentario